

ANRICA

Austrian Natural Resources Management and International Cooperation Agency

Cost-effective systems for multi-purpose national forest monitoring

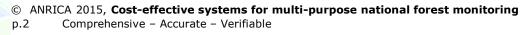
Smart sampling with high-tech methods!

WFC2015

XIV World Forestry Congress Tuesday, 8th of September 2015

Why Multipurpose National Forest Monitoring Systems?

Austrian Natural Resources Management and International Cooperation Agency


Definition of NFI / NFM

The goal of forest monitoring is to collect information on forest resources for decision making on

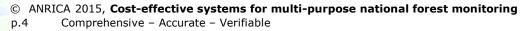
- policies and strategies development,
- programs and actions towards sustainable forest management.
- NFI/NFM subject to research and development for many decades
- Over the years many different approaches to NFI/NFM depending on specific objectives and national contexts
- Post 1992: Significant increase in demand for information on forests and trees (i.e. UN conventions: UNFCCC, CBD, UNCCD, UNFF)

Reporting in the Context of Climate Change

Austrian Natural Resources Management and International Cooperation Agency

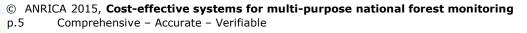
carbon accounting •	6 land-use classes 5 carbon pools (incl. biomass, litter, soil etc.) Principles: "transparent, accurate, comparable, consistent, complete"

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.3 Comprehensive – Accurate – Verifiable


Reporting in the Context of Climate Change

Austrian Natural Resources Management and International Cooperation Agency

UNFCCC	
REDD+	 Principles: "measurable, reportable and verifiable" 5 activities considered (deforestation, forest degradation, conservation, SFM and increase in forest carbon stocks) Multipurpose focus incl. co- benefits and safeguards


Reporting in the Context of SFM

Austrian Natural Resources Management and International Cooperation Agency

Global / Regional / National Processes	
Forest Resources Assessment (FAO- FRA)	 Current status and recent trends for about 40 attributes of forest (incl. extent, condition and uses)
ITTO	 SFM C&I for natural tropical forests
National forest sector planning	 Production, conservation community uses etc.

NFI /NFM issues encountered by Countries

Austrian Natural Resources Management and International Cooperation Agency

Issues with NFI / NFM:

- Information for the various reports are collected on "ad-hoc" basis (costly and inefficient)
- Same target parameters are assessed separately for different reports (duplication of work)
- Lack of consistency of methods and data over time (information on trends unreliable)
- Sub-optimal inter-agency cooperation at national level
- Fragmented assessments NOT costeffective

NFI Approach and Design Matters

Austrian Natural Resources Management and International Cooperation Agency

NFI / NFM system requirements:

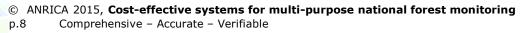
- Information must be comprehensive, accurate and verifiable
- One NFI system to meet the information needs of all reporting obligations
- Main target variables related to biomass/ carbon/ timber
- Results statistically sound (i.e. accuracy levels known)
- Design to allow continuous monitoring
- Cost-effective

Suriname NFI-Pilot Project **Development and Testing of a cost-effective** and efficient NFI Methodology

Austrian Natural Resources Management and International Cooperation Agence

Objectives

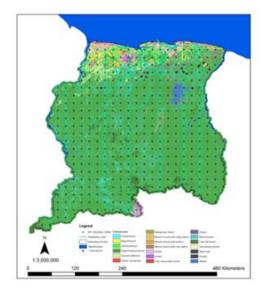
Cooperation between ANRICA and SBB-Suriname to test a novel approach using state-of-the-art remote sensing technology combined with systematic field inventory

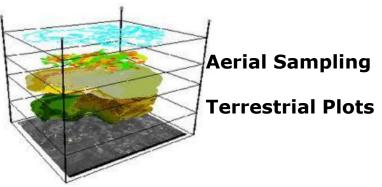

Forest Situation in Suriname

- Remoteness of most of the forests;
- Difficult access and high costs of field sampling;
- Limited number of personnel;
- Little is known about the variability of forest stocking conditions across the country's forest types

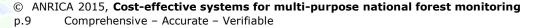
Suriname NFI-Pilot Project Development and Testing of a cost-effective and efficient NFI Methodology

Austrian Natural Resources Management and International Cooperation Agency


Two-Phase Inventory Design


Systematic lay-out of tracts covering the entire country

Assessment in two phases:


- Large-scale aerial sampling
- Terrestrial inventory

Main focus is on reducing field work as much as possible by maintaining high accuracy levels of results (i.e. sampling errors of AGB, timber stocks)

JOANNEUM RESEARCH

Austrian Natural Resources Management and International Cooperation Agency

NFI - Suriname

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.10 Comprehensive – Accurate – Verifiable

Two-Phase Inventory Design

Austrian Natural Resources Management and International Cooperation Agency

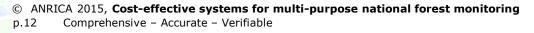
NFI System Component I:

Aerial Data Acquisition and Processing

NFI System Component II:

Terrestrial Inventory

© ANRICA 2015, Cost-effective systems for multi-purpose national forest monitoring p.11 Comprehensive – Accurate – Verifiable


NFI System Component I: Aerial Data Acquisition and Processing

Austrian Natural Resources Management and International Cooperation Agency

Airborne Remote Sensing Platform

- Flight Campaign Suriname (piloting)
- Deriving Aerial Image Features

Data Acquisition and Mapping ADAM

Austrian Natural Resources Management and International Cooperation Agency

Austrian Natural Resources Management and International Cooperation Agency

Sensors – georeferencing

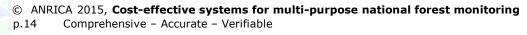
- GPS phase receiver, (2 x DL4-L1L2 NOVATEL)
- Inertial measuring unit (IMU), iMAR-FSAS

the images can be directly geo-referenced without ground control points

Sensors – image capture

- Mid-format digital camera PROSILICA (20MP), flight height 1000: 17cm
- Near infrared camera

Control unit


rugged PC and data storage

Independent power supply by alternator and batteries

Flight control system

Workflow for data processing

Direct geocoding concept

Austrian Natural Resources Management and International Cooperation Agency

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.15 Comprehensive – Accurate – Verifiable

Austrian Natural Resources Management and International Cooperation Agency

Sensors – georeferencing

- GPS phase receiver, (2 x DL4-L1L2 NOVATEL)
- Inertial measuring unit(IMU), iMAR-FSAS

the images can be directly geo-referenced without ground control points

Sensors – image capture

- Mid-format digital camera PROSILICA (20MP), flight height 1000: 17cm
- Near infrared camera

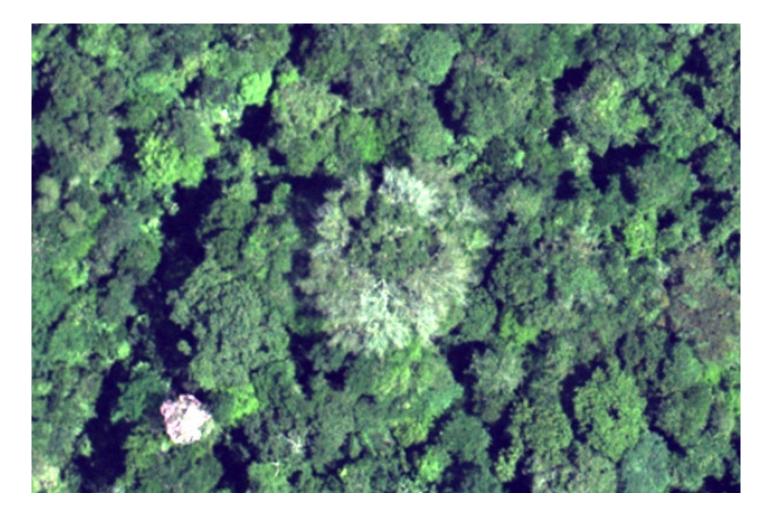
Control unit

rugged PC and data storage

Independent power supply by alternator and batteries

Flight control system

Workflow for data processing



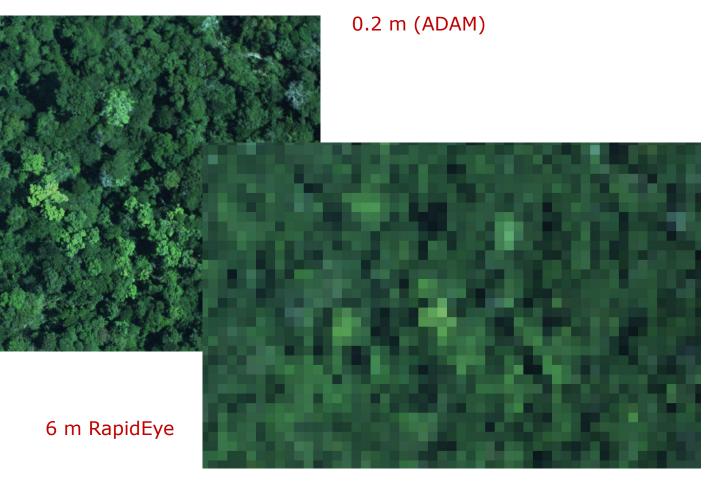
© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.16 Comprehensive – Accurate – Verifiable

High Geometric Resolution

Austrian Natural Resources Management and International Cooperation Agency

NRICA

© ANRICA 2015, Cost-effective systems for multi-purpose national forest monitoring Comprehensive - Accurate - Verifiable p.17



Simulation of Satellite Resolutions

Austrian Natural Resources Management and International Cooperation Agency

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.18 Comprehensive – Accurate – Verifiable

Austrian Natural Resources Management and International Cooperation Agency

Sensors – georeferencing

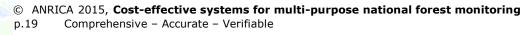
- GPS phase receiver, (2 x DL4-L1L2 NOVATEL)
- Inertial measuring unit(IMU), iMAR-FSAS

the images can be directly geo-referenced without ground control points

Sensors – image capture

- Mid-format digital camera PROSILICA (20MP), flight height 1000: 17cm
- Near infrared camera

Control unit


rugged PC and data storage

Independent power supply by alternator and batteries

Flight control system

Workflow for data processing

Austrian Natural Resources Management and International Cooperation Agency

NRIC

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.20 Comprehensive – Accurate – Verifiable

Austrian Natural Resources Management and International Cooperation Agency

Sensors – georeferencing

- GPS phase receiver, (2 x DL4-L1L2 NOVATEL)
- Inertial measuring unit(IMU), iMAR-FSAS

the images can be directly geo-referenced without ground control points

Sensors – image capture

- Mid-format digital camera PROSILICA (20MP), flight height 1000: 17cm
- Near infrared camera

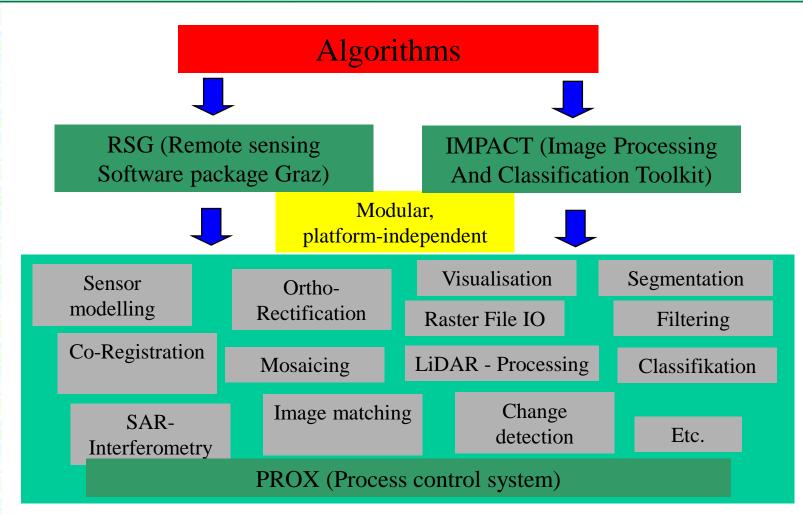
Control unit

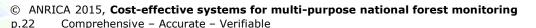
rugged PC and data storage

Independent power supply by alternator and batteries

Flight control system

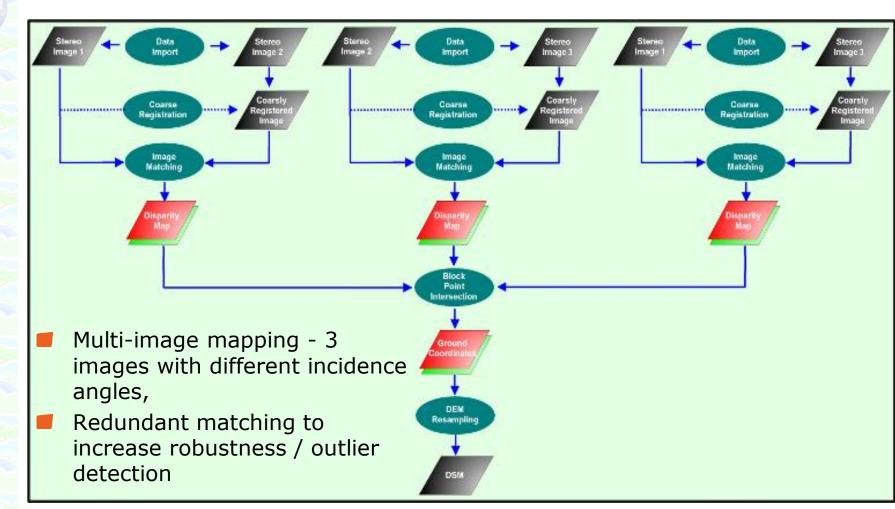
Workflow for data processing





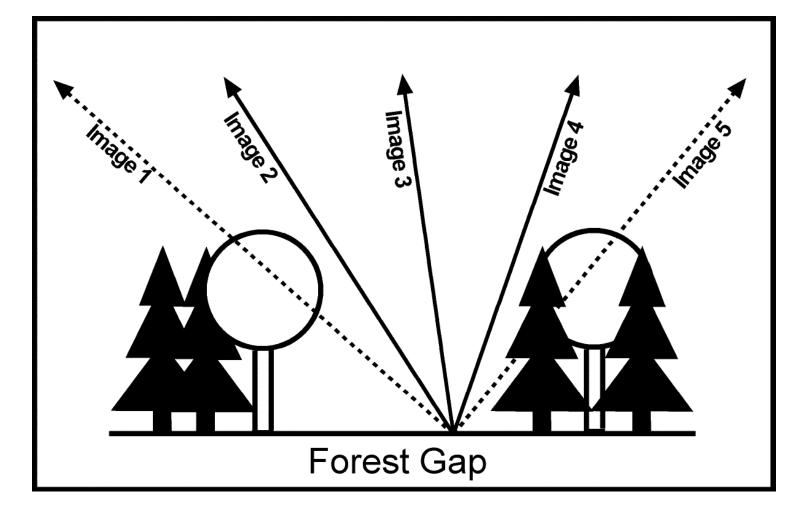
Software at Joanneum Research

Austrian Natural Resources Management and International Cooperation Agency



Photogrammetry - Workflow

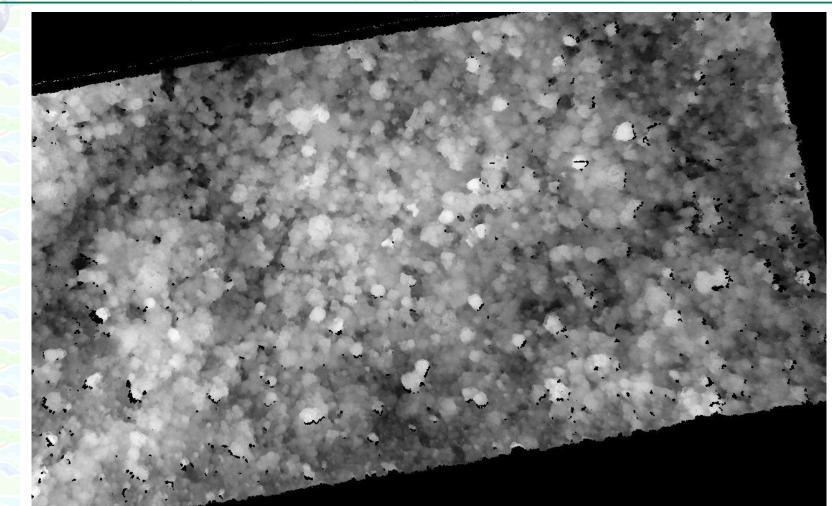
Austrian Natural Resources Management and International Cooperation Agency



Photogrammetry Multi-Stereo-Concept

Austrian Natural Resources Management and International Cooperation Agency

ANRICA 2015, Cost-effective systems for multi-purpose national forest monitoring © p.24

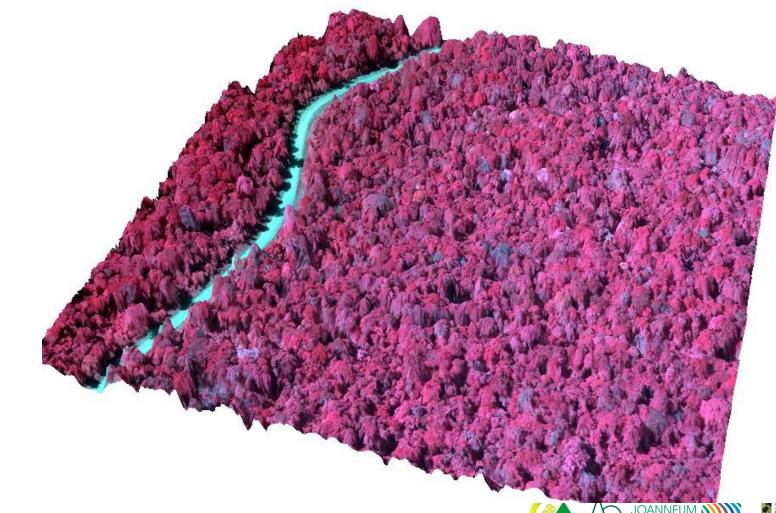


Comprehensive - Accurate - Verifiable

Digital Surface Model (DSM)

Austrian Natural Resources Management and International Cooperation Agency

ANRICA


© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.25 Comprehensive – Accurate – Verifiable

3D DSM View

Austrian Natural Resources Management and International Cooperation Agency

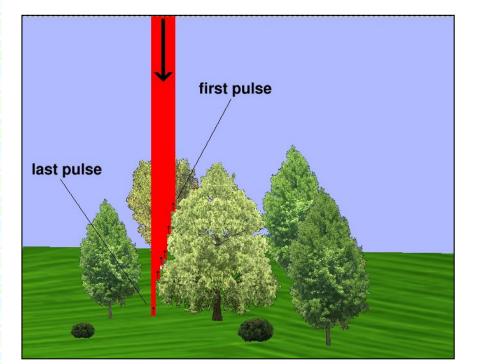
ANRICA

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.26 Comprehensive – Accurate – Verifiable

Improved System

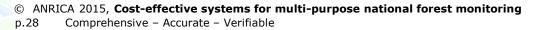
Austrian Natural Resources Management and International Cooperation Agency

Optical Camera Phase One ixA 180 (80 MP)



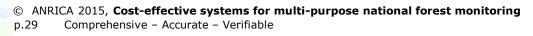
© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.27 Comprehensive – Accurate – Verifiable

System improvements


Austrian Natural Resources Management and International Cooperation Agency

Measurement of travel time

- First pulse: measurement location and intensity of first laser pulse returned → Information on vegetation surface
- Last pulse: measurement of location and density of last pulse returned → Information on round surface

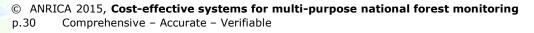


Advantages of ADAM

Austrian Natural Resources Management and International Cooperation Agency

- Adam can be operated world-wide on most common Cessna types (certified for Cessna 182)
- ADAM can be operated as multi-sensor system
- Direct geocoding without ground control points with high geometric accuracy
- High geometric resolution with new camera system
- More or less weather independent (ADAM can operate under clouds)
- 3D terrain and forest canopy models can be derived

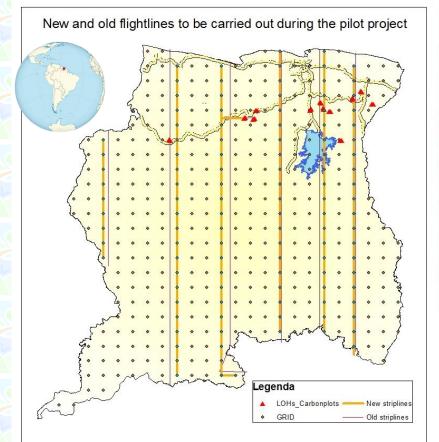
NFI System Component I: Aerial Data Acquisition and Processing

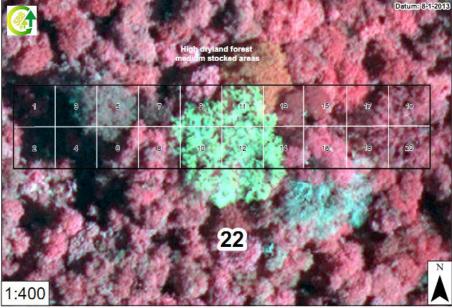

Austrian Natural Resources Management and International Cooperation Agency

• Airborne Remote Sensing Platform

Flight Campaign Suriname (piloting)

Deriving Aerial Image Features





Selection of Flight Corridors

Austrian Natural Resources Management and International Cooperation Agency

Principal Sample Plot 22 van SU 5956 met MAPindeling, omgeving Mazonia

- Map derived from satellite image classification of forest types
- Locations of corridors aim to capture the spectrum of forest types and stand conditions found in Suriname
- More than 10.000 images taken during flight campaign

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.31 Comprehensive – Accurate – Verifiable

High Geometric Resolution

Austrian Natural Resources Management and International Cooperation Agency

ANRICA

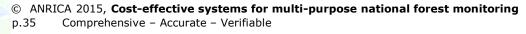
© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.32 Comprehensive – Accurate – Verifiable

JOANNEUM RESEARCH

NFI System Component I: Aerial Data Acquisition and Processing

Austrian Natural Resources Management and International Cooperation Agency

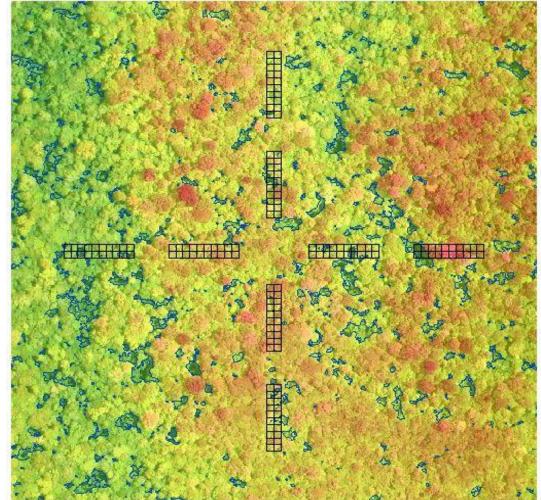
- Airborne Remote Sensing Platform
- Flight Campaign Suriname (piloting)
- Deriving Aerial Image Features



Best performing features

Austrian Natural Resources Management and International Cooperation Agency

- 1. Forest canopy density
- 2. Canopy roughness (DSM standard deviation)
- 3. Crown Volume
- Option 1: Volume by difference of DSM SRTM
- Option 2: Volume by difference of DSM DTM derived from photogrammetry
- 4. Number of trees (average crown size)



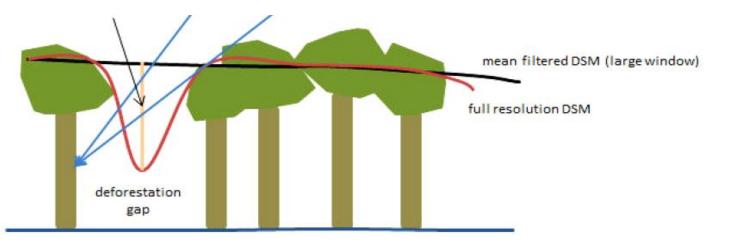
Feature 1: Canopy Density

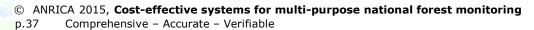
Austrian Natural Resources Management and International Cooperation Agency

Definition:

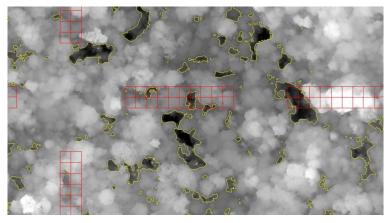
Proportion of non – gap areas and total area

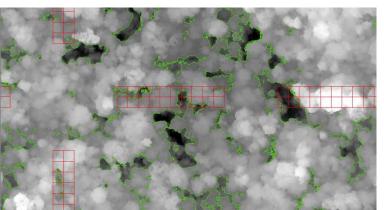
© ANRICA 2015, Cost-effective systems for multi-purpose national forest monitoring
 p.36 Comprehensive – Accurate – Verifiable




Feature 1: Canopy Density

Austrian Natural Resources Management and International Cooperation Agency

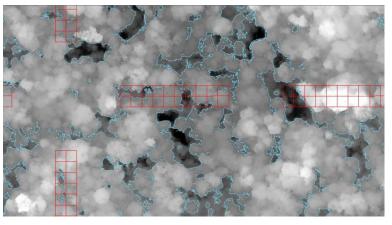



Feature 1: Canopy Density

Austrian Natural Resources Management and International Cooperation Agency

Low Threshold

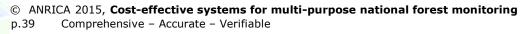
Medium Threshold



ANRICA

© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.38 Comprehensive – Accurate – Verifiable

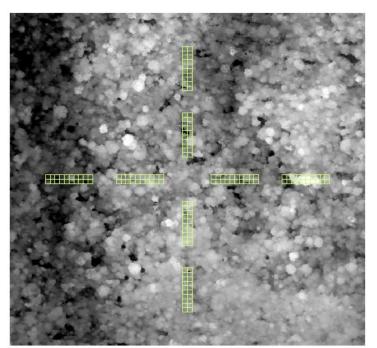
High Threshold

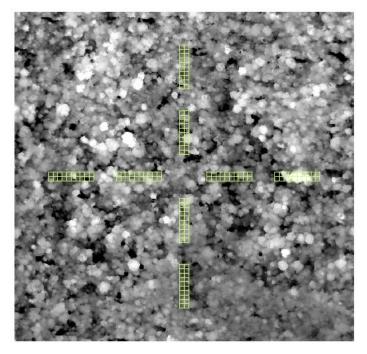

Feature 2: Standard Deviation -Roughness

Austrian Natural Resources Management and International Cooperation Agency

Definition:

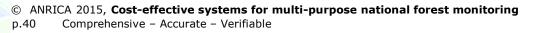
Feature 2 is the standard deviation of the relative height difference between DSM and SRTM terrain height model. SRTM used to minimize the influence of the terrain.



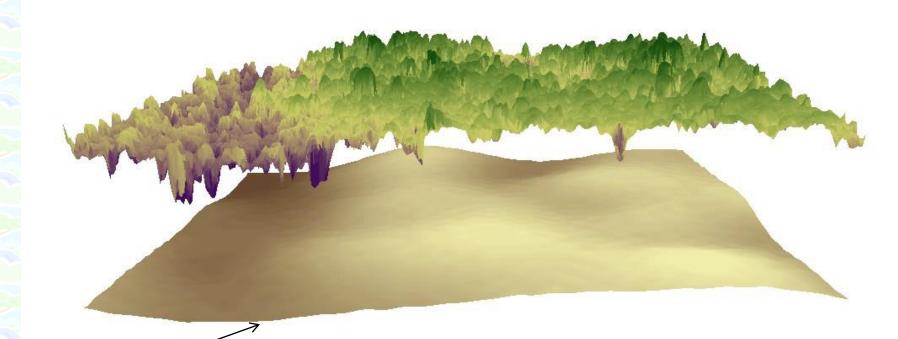

Feature 2: Standard Deviation -Roughness

Austrian Natural Resources Management and International Cooperation Agency

Original DSM



DCM - SRTM

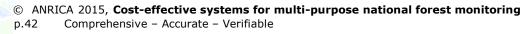

ANRIC

Feature 3: Crown Volume

Austrian Natural Resources Management and International Cooperation Agency

Either from SRTM or DTM derived from photogrammetry, in future derived by LiDAR data with improved precision

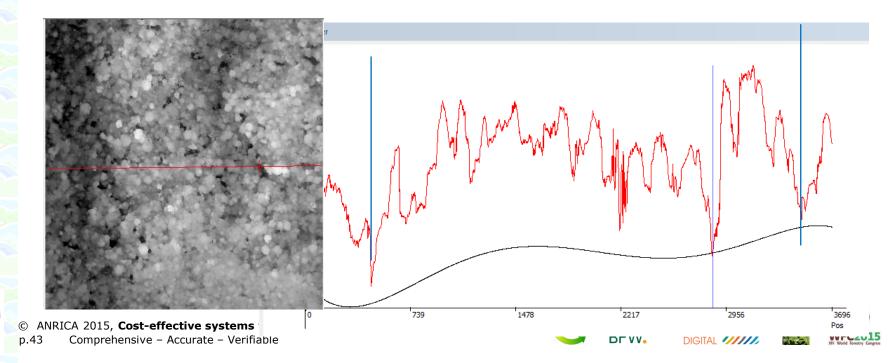
ANRICA 2015, Cost-effective systems for multi-purpose national forest monitoring
 p.41 Comprehensive – Accurate – Verifiable


Feature 3: Crown Volume

Austrian Natural Resources Management and International Cooperation Agency

Option 1: Definition

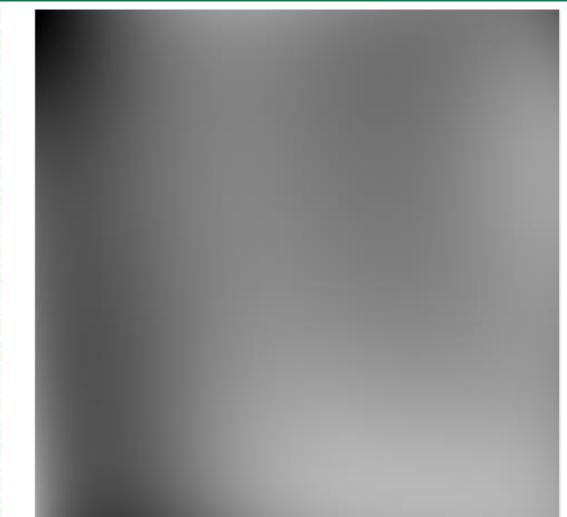
Difference of DSM derived from aerial images and "terrain model" derived from SRTM within the area of the sample plot. Despite the fact that the SRTM model is only a rough estimate of the terrain it reflects the main characteristics of the terrain.



Feature 3, Option 2: Volume (Difference of DSM – DTM Photogrammetry)

Austrian Natural Resources Management and International Cooperation Agency

Option 2: Definition:

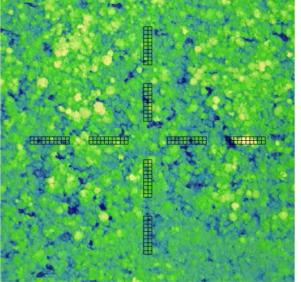

Difference of DSM derived from aerial images and terrain model derived from the stereo images within the area of the sample plot. Gaps in the forest are used to derive points on the ground applying a minimum filter and interpolation of the deepest detected ground points.

Feature 3, Option 2: Volume (Difference of DSM – DTM Photogrammetry)

Austrian Natural Resources Management and International Cooperation Agency

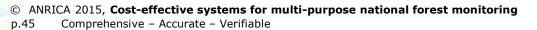
DTM Derived from Gap Interpolation

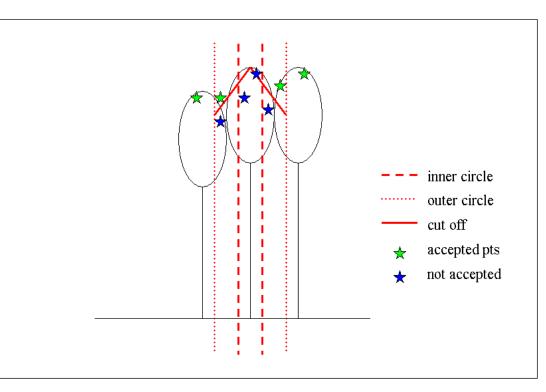
© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.44 Comprehensive – Accurate – Verifiable



Comparison Option 1 and Option 2 (SU 5956)

Austrian Natural Resources Management and International Cooperation Agency


DSM - SRTM

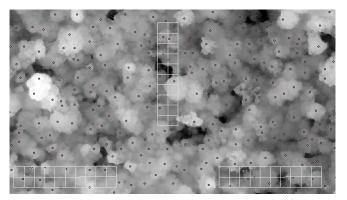


Feature 4: Number of Tree Tops

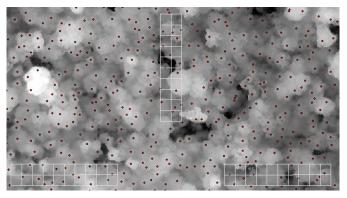
Austrian Natural Resources Management and International Cooperation Agency

Definition:

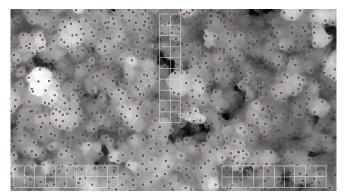
Feature 4 represents the number of tree crowns within the sample plot. For this purpose a tree top detector was applied to the data using different assumptions on the average crown size.

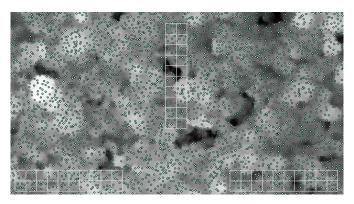

© ANRICA 2015, Cost-effective systems for multi-purpose national forest monitoring
 p.46 Comprehensive – Accurate – Verifiable

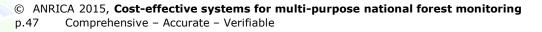
Feature 4: Number of Tree Tops


Austrian Natural Resources Management and International Cooperation Agency

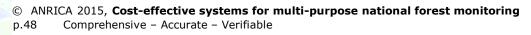
Crown Size 10m




Crown Size 5m

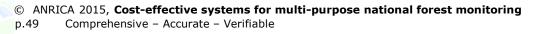

Crown Size 3m

ß



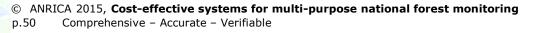
Summary

- Flight / Data costs comparably low as Cessna aircrafts are available in any country (no costly transfer of special aeroplanes for flight campaign needed)
- Extraction of features from the aerial images can be done automatically with a satisfactory accuracy
- But: 3D-Features can be derived more precisely by LiDAR
 Data (LiDAR System available!)
- The aerial image features are further used to develop aerial volume equations for above-ground biomass and timber volume (NFI Component II)


Field work

Austrian Natural Resources Management and International Cooperation Agency

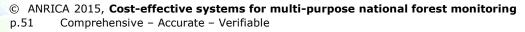
ANRICH


NFI System Component II: Terrestrial Inventory

Austrian Natural Resources Management and International Cooperation Agency

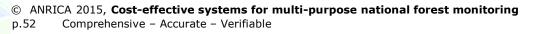
Two-phase Inventory Concept

- Terrestrial Plot Design
- Combining Terrestrial and Aerial Data
- Reduction of Terrestrial Plots and Expenses



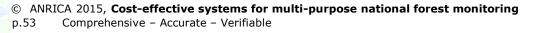
Two Phase Inventory

- Main Goal: Reducing the number of expensive terrestrial plots
- Terrestrial plots are expensive because
 - it takes a long time to measure
 - they are often difficult to access
 - larger teams of field and support staff needed



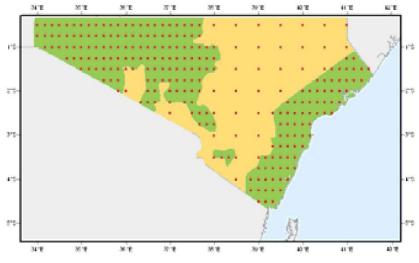
Two Phase Inventory

- Terrestrial plots are <u>essential</u> because many types of information can only be obtained by actually visiting the plot, for example:
 - Tree diameters
 - Tree species
 - Dead wood
 - Biodiversity
 - Interviews with local communities
- The number of terrestrial plots is reduced as much as possible, but not further!
- The sample has to remain representative



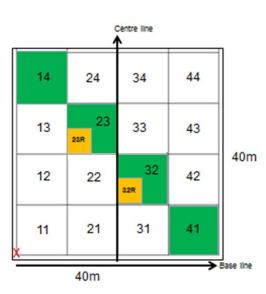
NFI System Component II: Terrestrial Inventory

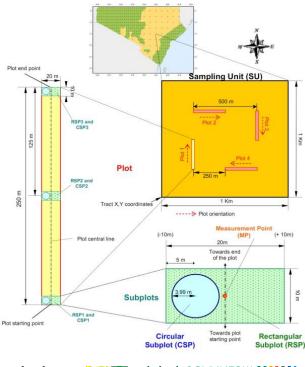
- Two-phase Inventory Concept
- Terrestrial Plot Design
- Combining Terrestrial and Aerial Data
- Reduction of Terrestrial Plots and Expenses



Terrestrial Plot Design

- Regular permanent grid over the whole country
- Random starting point
- Sampling density may vary for different strata, for example production forest and protection/ conservation forest

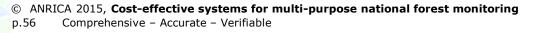




Plot Design

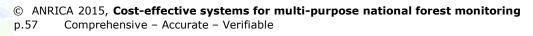
Austrian Natural Resources Management and International Cooperation Agency

- On each grid point a single plot or plot cluster
- Clusters reduce travelling costs
- Plot design is flexible and can be adapted to the customer's needs and the specific circumstances


NR

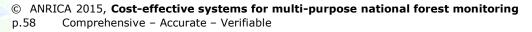
NFI System Component II: Terrestrial Inventory

- Two-phase Inventory Concept
- Terrestrial Plot Design
- Combining Terrestrial and Aerial Data
- Reduction of Terrestrial Plots and Expenses



Combining Terrestrial and Aerial Data

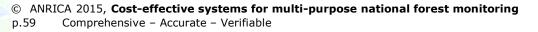
- Calculate values of target variables for each plot using either pantropical formulas or locally parameterised functions
 - Biomass
 - Timber volume
- Use features from aerial data as independent variables in multivariate linear regression
- Employ feature selection procedure, for example try all possible combinations or stepwise regression



The Regression Model

- Correlation between aerial features and target variable (biomass, timber volume) is key
- Volume covered by crowns is best indicator → need good terrain model → laser scanning is recommended
- The result of each feature combination is evaluated by calculating the AIC
- Account for multiple input variables by using the adjusted R², avoids overfitting
- The normal R² would be too optimistic, features that don't provide additional information could be included
- The best model is chosen for each target variable

The Regression Estimate


Austrian Natural Resources Management and International Cooperation Agency

• Unbiased estimate of population mean:

$$\bar{y} = \bar{y}_t + b \cdot (\bar{x}_{ae} - \bar{x}_t)$$

- *y* is e.g. biomass in t/ha
- \overline{y}_t is the mean of the terrestrial sample
- *b* is a vector of regression coefficients
- \bar{x}_{ae} is the vector of means of the features in the aerial sample
- \bar{x}_t is the vector of means of the features of the plots that are in both the terrestrial and the aerial sample

Combining Terrestrial and Aerial Data

Austrian Natural Resources Management and International Cooperation Agency

- The adjusted R² of the regression is the key value for precision and efficiency
- Systematic sampling: Double(!) sample size reduces the standard deviation of the estimate of the population mean to only ~71% (not 50%)

$$V(\bar{y}) = \frac{S_t^2(y)}{n_t}$$

 Two-phase sampling: The same effect as twice the sample size can be obtained by using two-phase sampling and reaching an R² of 0.5

$$V(\bar{y}) = \frac{S_t^2(y) \cdot (1 - R^2)}{n_t} + \frac{S_t^2(y) \cdot R^2}{n_{ae}}$$

The Core of the Efficiency

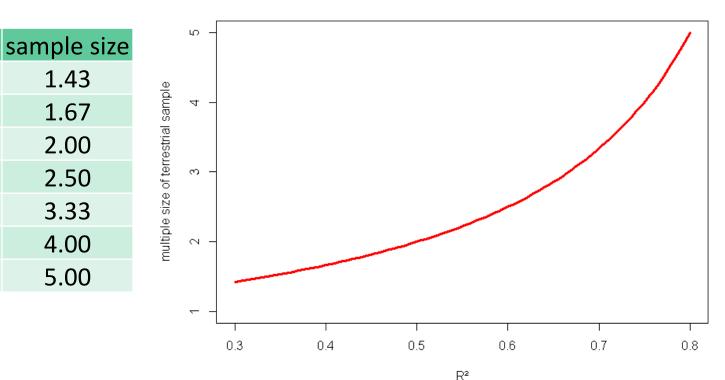
$$V(\bar{y}) = \frac{S_t^2(y) \cdot (1 - R^2)}{n_t} + \frac{S_t^2(y) \cdot R^2}{n_{ae}}$$

- n_{ae} is the size of the aerial sample (large)
- n_t is the size of the terrestrial sample (expensive)
- S_t^2 is the variance of the terrestrial sample
- Right fraction has large denominator → becomes negligible
- *R*² 'moves' the variance to the right fraction
- The bigger R^2 , the less variance remains

The Core of the Efficiency

$$V(\bar{y}) = \frac{S_t^2(y) \cdot (1 - R^2)}{n_t} + \underbrace{\frac{S_t^2(y) \cdot R^2}{n_{ae}}} \to \mathbf{0}$$

- n_{ae} is the size of the aerial sample (large)
- n_t is the size of the terrestrial sample (expensive)
- S_t^2 is the variance of the terrestrial sample
- Right fraction has large denominator → becomes negligible
- *R*² 'moves' the variance to the right fraction
- The bigger R^2 , the less variance remains



Combining Terrestrial and Aerial Data

Austrian Natural Resources Management and International Cooperation Agency

equivalent of increased sample

INR

 \mathbb{R}^2

0.30

0.40

0.50

0.60

0.70

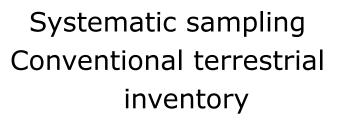
0.75

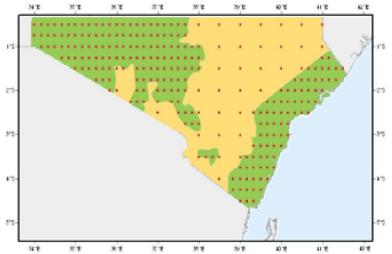
0.80

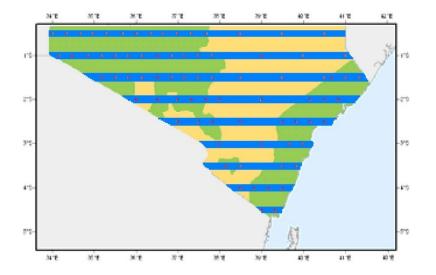
p.63 Comprehensive – Accurate – Verifiable

NFI System Component II: Terrestrial Inventory

- Two-phase Inventory Concept
- Terrestrial Plot Design
- Combining Terrestrial and Aerial Data
- Reduction of Terrestrial Plots and Costs

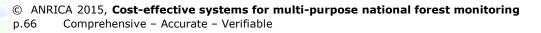



Reduction of Terrestrial Plots


Austrian Natural Resources Management and International Cooperation Agency

Two-phase sampling with reduced terrestrial plots

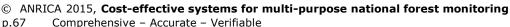
© ANRICA 2015, **Cost-effective systems for multi-purpose national forest monitoring** p.65 Comprehensive – Accurate – Verifiable


Reduced Expenses depending on R²

Austrian Natural Resources Management and International Cooperation Agency

• Example for an conventional terrestrial inventory:

Cost of surveying a field plot	USD 10,000
Standard deviation of biomass	70%
Desired precision (95% CI)	± 5%
Number of plots	392
Total cost	USD 3,920,000

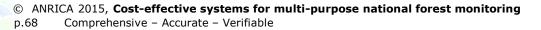

Reduced Expenses depending on R²

Austrian Natural Resources Management and International Cooperation Agency

- Applying the two-phase inventory
- Adding flight campaign
- Cost: 450,000 USD

						1 018	AI COST OF TWO	-pnase inven	tory	
R²	Number of plots	Total cost (USD)	Saving in %	400000	_			·	-)0%
0.30	274	3,194,000	18.5	-					ç	0%
0.40	235	2,802,000	28.5	st 3000000 -					8	30%
0.50	196	2,410,000	38.5	:ost 3000					7	/0%
0.60	157	2,020,000	48.5	total cost	-				6	60%
0.65	137	1,822,000	53.5	200000					5	50%
0.70	118	1,626,000	58.5	5					4	10%
0.75	98	1,430,000	63.5	000					3	30%
0.80	78	1,234,000	68.5	100000	l	1	1			I
					0.3	0.4	0.5	0.6	0.7	0.8

Comprehensive - Accurate - Verifiable


Total cost of two-phase inventory

 \mathbb{R}^2

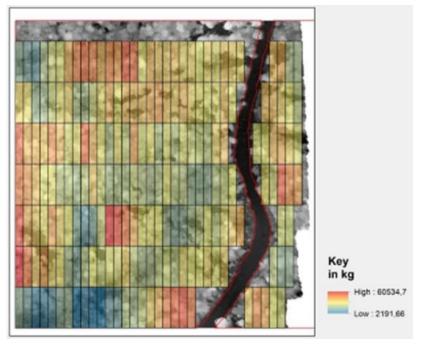
Reduced Expenses due to Twophase Sampling

COSTS	Conventional terrestrial	Two-phase
Cost of surveying a field plot	USD 10,000	USD 10,000
Standard deviation of biomass	70%	70%
Desired precision (95% CI)	± 5%	± 5%
Cost of flight campaign	-	USD 450,000
R ²	-	0.6
Number of plots	392	157
Total cost	USD 3,920,000	USD 2,020,000

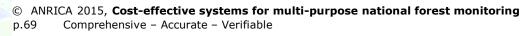
Cost-effective NFI Implementation

Austrian Natural Resources Management and International Cooperation Agency

Cost-effectiveness achieved through


- applying aerial biomass and timber models
- large number of aerial samples

Terrestrial plots aim at


• Development of aerial models Above-ground biomass, carbon stocks, timber volume etc.

• Assessing additional essential inventory information

Species composition/distribution, tree health, regeneration, site parameters, growth/ mortality, NTFP, bio-d indicators etc.

Cost-effective NFI Implementation

Austrian Natural Resources Management and International Cooperation Agency

Country	Terrestrial Inventory	Two-phase Inventory
Philippines	389 ¹	190
Cameroon	236 ¹	120
Suriname	400 ²	180

 ¹ FAO 2008. National Forest Monitoring and Assessment – Manual for integrated field data collection National Forest Monitoring and Assessment Working Paper NFMA 37/E. Rome
 ² Result of Suriname NFI Pilot Project

- Maintaining a systematic inventory grid covering the entire country
- Reducing number of field plots and inventory costs by appr. 50%
- High accuracy of target parameters
- Consistent re-measurement (permanent plots)
- Collecting comprehensive information including adequate assessment of other ecological and socio-economic parameters

Acknowledgement

We are grateful to our partners for the support provided in this project:

- SBB (Stichting voor bosbeheer en bostoezicht)
- Joanneum Research
- BFW (Austrian Federal Research Center)

The project received generous funding from:

Austrian Ministry of Agriculture, Forestry, Environment and Watermanagement

RI

Implementatiox is our success

Austrian Natural Resources Management and International Cooperation Agency

Karlsgasse 9/2, 1040 Vienna, Austria Tel: +43 1 914 60 00, Fax: +43 7615 305 05 67 office@anrica.org, http://anrica.org

